365beÌåÓý

µ±Ç°Î»Ö㺠Ê× Ò³ - ¿ÆѧÑо¿ - ѧÊõ±¨¸æ - ÕýÎÄ

365beÌåÓý:Sino-Russian Mathematics Center-JLU Colloquium (2025-007)¡ªTanaka prolongation procedure, Kantor algebras, and (homotopy) Leibniz structures

·¢±íÓÚ£º 2025-03-12   µã»÷£º 

±¨¸æÌâÄ¿£ºTanaka prolongation procedure, Kantor algebras, and (homotopy) Leibniz structures

±¨ ¸æ ÈË£ºAlexie Kotov

ËùÔÚµ¥Î»£ºUniversity of Hradec Kr¨¢lov¨¦ (UHK)

±¨¸æʱ¼ä£ºMarch 13, 2025, 21:00-23:00

±¨¸æµØµã£ºZoom Id: 904 645 6677£¬Password: 2024

»áÒéÁ´½Ó£º

https://zoom.us/j/9046456677?pwd=Y2ZoRUhrdWUvR0w0YmVydGY1TVNwQT09&omn=89697485456


±¨¸æÕªÒª: In the first part of this lecture a brief introduction to Tanaka's theory of prolongation of non-positively graded Lie algebras will be given. This procedure will then be applied to a free Lie superalgebra. It will be shown that the resulting graded Lie superalgebra contains complete information about Leibniz brackets. At the end of the lecture, if time permits, the lecturer will explain the connection between the structures discussed and functional calculus on path spaces.


±¨¸æÈ˼ò½é£ºAlexei Kotov is an professor in University of Hradec Kr¨¢lov¨¦ (UHK)£¬Czechia. His research interests include super- and graded geometry, special Riemannian geometry, Lie algebroids and groupoids, geometry of PDEs, non-linear sigma models.

365BEÌåÓý¹ÙÍø°æÏÂÔØ-365BEÌåÓý2025×îаæÏÂÔØv3.7.5