365beÌåÓý

µ±Ç°Î»Ö㺠Ê× Ò³ - ¿ÆѧÑо¿ - ѧÊõ±¨¸æ - ÕýÎÄ

365beÌåÓý:365beÌåÓý¡¢Ëù2025365beÌåÓýϵÁÐѧÊõ»î¶¯£¨µÚ009³¡£©£ºÁõ¶« ½ÌÊÚ ºþÖÝʦ·¶Ñ§Ôº

·¢±íÓÚ£º 2025-02-28   µã»÷£º 

±¨¸æÌâÄ¿£ºSingular vectors, characters, and composition series for the N=1 BMS superalgebra

±¨ ¸æ ÈË£ºÁõ¶« ½ÌÊÚ

ËùÔÚµ¥Î»£º ºþÖÝʦ·¶Ñ§Ôº

±¨¸æʱ¼ä£º2025365beÌåÓý3ÔÂ5ÈÕ16:00-17:00

±¨¸æµØµã£º365beÌåÓý365beÌåÓýÂ¥µÚÎåÑÐÌÖÊÒ


±¨¸æÕªÒª: The N=1 BMS superalgebra is the minimal supersymmetric extension of the BMS algebra with central extensions. This talk investigates the structure of Verma modules over the N=1 BMS superalgebra. We provide a detailed classification of singular vectors, establish necessary and sufficient conditions for the existence of subsingular vectors, uncover the structure of maximal submodules, present the composition series of Verma modules, and derive character formulas for irreducible highest weight modules. This is a joint work with Wei Jiang, Yufeng Pei and Kaiming Zhao.


±¨¸æÈ˼ò½é£ºÁõ¶«£¬ºþÖÝʦ·¶Ñ§Ôº365beÌåÓýϵÈý¼¶½ÌÊÚ¡¢Ð½®´óѧÌìɽѧÕß¡¢²©Ê¿Éúµ¼Ê¦£¬ºþÖÝÊÐÄÏÌ«ºþÌØÖ§¼Æ»®£¨ÊÐÍòÈ˼ƻ®£©»ñµÃÕߣ¬Ôø»ñÕã½­Ê¡¡°151È˲š±£¨µÚ¶þ²ã´Î£©£¬Õã½­Ê¡¡°Ç®½­È˲š°¼Æ»®£¬Õã½­Ê¡×ÔÈ»¿Æѧ»ù½ðί¡°Ê®Ò»ÎåÓÅÐã³É¹û½±¡±¡£Ö÷³Ö¹ú¼Ò×ÔÈ»¿Æѧ»ù½ðÃæÉÏÏîÄ¿3Ïî¡¢Õã½­Ê¡×ÔÈ»¿Æѧ»ù½ðÏîÄ¿4Ïº¬ÖصãÏîÄ¿Ò»Ï¡£ÔÚJ£®Algebra¡¢J£®Pure£®Appl. Algebra¡¢Proc. ROY. SOC. EDINB.A¡¢Commun Contempt. Math.µÈÆÚ¿¯ÉÏ·¢±íÂÛÎÄ60Óàƪ¡£


365BEÌåÓý¹ÙÍø°æÏÂÔØ-365BEÌåÓý2025×îаæÏÂÔØv3.7.5